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Abstract

Sooty blotch and flyspeck (SBFS) fungi produce superficial, dark-colored
colonies on fruits, stems, and leaves of many plant genera. These blemishes
are economically damaging on fruit, primarily apple and pear, because they
reduce the sale price of fresh fruit. Fungicide spray programs can control
SBEFS but are costly and impair human and environmental health; thus, less
chemically intensive management strategies are needed. Although the sci-
entific study of SBFS fungi began nearly 200 years ago, recent DNA-driven
studies revealed an unexpectedly diverse complex: more than 100 species in
30 genera of Ascomycota and Basidiomycota. Analysis of evolutionary phy-
logenetics and phylogenomics indicates that the evolution of SBFS fungi
from plant-penetrating ancestors to noninvasive ectophytic parasites was
accompanied by a massive contraction of pathogenicity-related genes, in-
cluding plant cell wall-degrading enzymes and effectors, and an expansion
of cuticle-degradation genes. This article reviews progress in understand-
ing SBFS taxonomy and ecology and improving disease management. We
also highlight recent breakthroughs in reconstructing the evolutionary ori-
gins of these unusual plant pathogens and delineating adaptations to their
ectophytic niche.
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INTRODUCTION

Fungi in the sooty blotch and flyspeck (SBFS) complex are among the most noticeable plant-
associated microbes. Their dark-colored colonies are conspicuous to the naked eye as superficial
inhabitants on numerous tree and vine crops, including apple, pear, persimmon, banana, mango,
orange, plum, and papaya as well as hundreds of noncrop species. Drawn by these intriguing
colonies, mycologists began to investigate SBFS fungi nearly 200 years ago (99).

Despite their exclusively surface-dwelling nature, SBFS fungi are economically important
pathogens of several tree fruit crops, especially apple. The fruit blemishing caused by their dark
blotches and clusters of black dots often precludes fresh-market sale. Diverting SBFS-infected
apples to alternative uses such as juice, sauce, and pies salvages some revenue, but more than 90%
of the profit can be lost from high-value cultivars (124). Severely infected apples also lose value
because they become desiccated in cold storage (87).

Scientific research on SBFS was minimal until recently. Several factors contributed to the slow
pace of research progress. For example, standard surface-sterilization procedures often kill SBFS
fungi. They grow so slowly in culture that they are often overgrown by other fruit-inhabiting
fungi. Most SBFS species do not sporulate on fruit surfaces; therefore, they must be coaxed to
sporulate in culture, and some flatly refuse to do so. Colony morphology is only marginally help-
ful as a clue for species identification because cryptic species are commonplace. These difficul-
ties apparently dissuaded all but a few mycologists and plant pathologists from pursuing SBFS
studies.

Research by Turner B. Sutton and colleagues (112) at North Carolina State University during
the 1980s and 1990s reinvigorated SBFS research. Their publications on SBFS ecology, etiology,
epidemiology, taxonomy, and management sparked the interest and participation of many other
groups around the world and ushered in a new era of faster progress. A review by Williamson
& Sutton (124) placed their group’s research in the context of historical and concurrent efforts.
More recently, DNA-based fungal identification and phylogenetic analysis triggered a new burst
of SBFS research that revealed a far more diverse species assemblage than previously known and
opened new directions for research. Much of this progress was reviewed by Gleason et al. (42).
The current decade has seen a third wave of major advances in understanding SBFS. Studies of the
evolutionary origins of this unique group provided a basis for exploring adaptive mechanisms. Ge-
nomic and transcriptomic studies revealed the profound evolutionary changes that accompanied
the transition of SBFS fungi to their surface-dwelling niche. Recent field and laboratory stud-
ies have also begun to clarify how SBFS species grow and proliferate on the fruit surface. This
review is comprehensive but highlights these recent advances and the many questions they have
raised.

TAXONOMY

Taxonomy claims a central role in the story of SBFS research. Confusion about the identity of
the causal fungi thwarted progress for more than 150 years (42). Application of DNA sequence
information to SBFS taxonomy revealed unexpected taxonomic diversity and facilitated studies of
the etiology and environmental biology of component species. A brief summary of the taxonomic
history follows; additional details are in prior reviews (42, 75, 124).

Morphology of SBFS colonies on the fruit surface is a consistent character (42). However,
several genera produce similar morphologies, also called mycelial types (9, 16, 32, 36) (Figure 1).
Species identification combines sequence information for the internal transcribed spacer (ITS)
and large subunit (LSU) regions of rDNA with morphological evidence in culture because SBFS
fungi rarely produce spores on apple fruit. A modified Koch’s postulates approach for confirming
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Figure 1

Appearance on apple skin of mycelial types of fungi in the sooty blotch and flyspeck (SBFS) complex. (#) Flyspeck. (/) Compact speck.
(¢) Discrete speck. (d) Ramose caused by Stomiopeltis spp. () Sparse ramose caused by Geastrumia spp. (f) Ridged honeycomb.
(g) Arborescent punctate. (b) Punctate. (i) Fuliginous. Figure adapted from Gleason et al. (42) with permission from the publisher.

pathogenicity requires inoculation of the fruit surface with a pure culture, incubation until the
expected mycelial type becomes visible, reculturing from the colony, and identification of the
inoculated isolate using molecular tools (9, 34, 49).

The convoluted tale of SBFS taxonomy began with designating Dothidea pomigena Schwein.
as the sole causal agent of SBFS (99). It was later renamed Asteroma pomi (Desm.) Lév. (72), then
Phyllachora pomigena (Schwein.) Sacc. (97), and finally Leptothyrium pomi A. Selby (100). SBEFS was
later viewed as two distinct diseases, sooty blotch and flyspeck, caused by P. pormigena and L. pomi,
respectively (51). Colby (25) described the sooty blotch pathogen [at that time named Gloeodes
pomigena (Schwein.) Colby] as having a mycelial mat, whereas colonies of the flyspeck pathogen
had clusters of sclerotium-like bodies without a mycelial mat. Baines (7) further cemented the
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two-disease, two-species paradigm of sooty blotch and flyspeck. The flyspeck pathogen was first
renamed Microthyriella rubi Petr. and then Schizothyrium pomi (Mont.) Arx (120). Zygophiala ja-
maicensis Mason, a cause of flyspeck on banana, was assumed to be the anamorph of S. pomi (33).
In the late 1990s, sooty blotch was revised as a three-species complex encompassing Leptodontium
elatins (F. Mangenot) de Hoog, Peltaster fructicola Eric M. Johnson, T.B. Sutton & Hodges, and
Geastrumia polystigmatis Bat. & M.L. Farr (61).

The addition of DNA-based phylogenetic analysis to the morphological description revealed
that SBFS is a highly diverse disease complex (9) that, to date, has expanded to more than 100
named and putative species worldwide (Table 1). This is arguably the most diverse plant-pathogen
complex ever documented. SBFS species reside almost entirely in the phylum Ascomycota, pri-
marily in the Dothideomycetes order Capnodiales but also in Eurotiomycetes. Several SBFS
species also reside in the phylum Basidiomycota. Genera that have been erected to accommo-
date newly described SBEFS species include Cyphellophora, Devriesia, Dissoconium, Houjia, Microcy-
clospora, Microcyclosporella, Ochroconis, Phaeothecoidiella, Phialophora, Pseudoveronaea, Ramichloridium,
Scleroramularia, Sporodesmajora, Strelitziana, Uwebraunia, Wallemia, and Zasmidium (36, 39,47, 73—
75,78, 109,122, 129, 132, 133, 135, 137). Although many new species have been described, the
numerous Stomziopeltis putative species found across the Northern Hemisphere lack Latin bino-
mials because they do not sporulate in culture, although sporulation has been observed rarely on
overwintered apples (1). SBFS isolates with I'TS sequences similar to those of Stomiopeltis-like spp.
have been identified from mango and banana and have been placed in the genus Chaetothyrina (54).
In contrast, Phaeococcus-like sp. CS1 produces only budding spores without mycelium in culture
but forms darkened sclerotium-like bodies on fruit and other hard surfaces (13), so CS1 has also
evaded formal description. The historically referenced G. pomigena has not been isolated since
its initial description nearly 100 years ago (25), and no preserved specimens have been found.
S. pomi and Z. jamaicensis were proved to be members of a species complex rather than sexual
and asexual stages of the same species, and Z. jamaicensis is now recognized as one of at least 16
Schizothyrium anamorphs (14, 38, 79, 134). A single species in the Basidiomycota genus Wallemia
(Wallemiomycetes, Wallemiales) was reported to cause SBFS symptoms (109).

The DNA-driven revolution in SBFS taxonomy erased the long-standing dogma of two
diseases—sooty blotch and flyspeck—each caused by a single pathogen species. We now recognize
that SBES is a pathogen complex that incorporates a spectrum of intergraded mycelial types and
is composed of species assemblages that vary with geographic region and disease management
regime (32, 42).

ECOLOGY
Disease Cycles

Most of the meager information about SBFS disease cycles comes from studies of a few species
in the eastern United States whose spores are morphologically distinct 21, 27, 61, 71, 89). Many
studies conducted before DNA-based identification became available were hampered by uncer-
tainty about species identification, but several general patterns emerged. For example, SBFS fungi
colonize a wide range of trees, shrubs, and vines in and around apple orchards (7, 25, 52, 61). Baines
(7) and Hickey (52) reproduced SBFS symptoms on apple fruit from inoculum obtained from ap-
ple, crabapple, blackberry, willow, sycamore, sassafras, wild grape, and smooth sumac (124). Using
molecular methods, numerous SBFS species were detected on presumptive additional reservoir
hosts (42,49, 69, 80, 82). Conidia produced on reservoir hosts move by wind and rain to orchards
at almost any time during the fruit development period (55, 61, 112).
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Table 1 Taxonomic placement, species names, mycelial type, geographic region, prevalence, GenBank accession num-

bers, and references for sooty blotch and flyspeck species and putative species

Mycelial type Geographic region GenBank
Order, Family Species names on host reported Prevalence accession References
Ascomycota, Dothideomycetes
Uncertain Phaeococcus-like sp. CS1 Compact USA Regional AY598891 13,32
Speck
Capnodiales Peltaster fructicola Punctate Bulgaria, China, Worldwide AY598886 15,16, 23,32,
Germany, Norway, 57, 82,90,
Serbia, Turkey, USA 123
(Eastern)
Peltaster cerophilus Punctate Germany, Norway, Regional KF646817 15, 16, 84, 87
Poland, Slovenia,
Spain
Peltaster gemmifer Punctate USA (Midwest) Regional AY598890 32,94
Peltaster crataegi Punctate China Regional NS 23
Peltaster punctatum Punctate China Regional NS 23
Peltaster rosacearum Punctate China Regional NS 23
Peltaster sp. Ch8 Punctate China Regional MF075292 93
Peltaster sp. 65rap Punctate Germany Rare JN573668.2 84
Uncertain Neopeltaster mali Punctate China Regional KT582276 23
Capnodiales, Schizothyrium pomi Flyspeck Germany, Norway, Worldwide AY598848 15,16, 36, 57,
Schizothyriaceae Serbia, Slovenia, 83
Turkey, Spain, USA
(Eastern)
Zygophiala cryptogama Flyspeck China, Spain, USA Worldwide AY59854 8
(Eastern)
Zygophiala cylindrica Flyspeck China, Spain, Turkey, Worldwide FJ941848 76,83
USA (Eastern)
Zygophiala qianensis Flyspeck China Rare KF806030 79
Zygophiala tardicrescens Flyspeck USA (Midwest) Rare AY598856 8
Zygophiala wisconsinensis Large flyspeck China, Republic of Worldwide AY598853 10, 40, 64, 83
Korea, Turkey, USA
(Midwest)
Zygophiala jamaicensis Flyspeck Jamaica Regional NS 81
Zygophiala emperorae Flyspeck China Regional KF646710 40
Zygophiala trispora Flyspeck China Rare KF646711 40
Zygophiala musae Flyspeck China Rare KF646707 39
Zygophiala inaequalis Flyspeck China Rare KF646709 39
Zygophiala longispora Flyspeck China Rare KF646708 39
Zygophiala Flyspeck Montenegro Rare KJ730237 131
montenegroensis
Schizothyrium sp. FS7 Flyspeck Spain, Turkey Regional JX042476 83
Schizothyrium sp. FS8 Flyspeck Spain Rare NS J.C. Batzer,
unpublished
results
Schizothyrium sp. FS9 Flyspeck Spain Rare NS J.C. Batzer,
unpublished
results
Capnodiales, Pseudoveronea obclavate Fuliginous USA (Midwest) Rare AY598877 9,73
Pseudoveronaea
Pseudoveronea ellipsoidea Fuliginous China, USA (Eastern) Worldwide FJ425205 23,32,67
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Table 1 (Continued)

Mycelial type Geographic region GenBank
Order, Family Species names on host reported Prevalence accession References
Capnodiales, Dissoconium acciculare Discrete speck USA (Midwest) Regional JQ622083 16,74
Dissoconiaceae
Dissoconium sp. CPC Discrete speck USA (Georgia) Rare JQ622084 16, 68
18969
Dissoconium sp. 1 Discrete speck Germany, Norway Regional KP400569 15,16
Dissoconium sp. 2 Discrete speck Germany, Norway Regional KP400570 12,15
Ramichloridium Fuliginous China Regional KC986373 109,121
apiculatum
Ramichloridium luteum Fuliginous China Rare EU329730 74
Ramichloridium Fuliginous USA (Midwest) Rare NR 120082 68
cucurbitae
Ramichloridium mali Fuliginous China Rare EF627452 109
Ramichloridium Punctate USA (Midwest) Rare JQ622086 74
punctatum
Ramichloridium sp. Fuliginous Spain Rare NS J.C. Batzer,
unpublished
results
Uwebraunia commune Ramose USA (Eastern) Regional AY598876 9,31,74
Uwebraunia dekkeri Punctate USA (Eastern) Regional FJ425204 32,74
Uwebraunia musae Fuliginous India Regional EUS514225 4
Zasmidium angulare Discrete speck | USA (Eastern) Rare JQ622088 32,74
Capnodiales, Devresia stretziea Discrete speck | China Rare JX294932 78
Teratoj
sphaeriaceae Devresia pseudoamericana | Unknown Germany Local GU570527 36
Microcyclospora malicola Fuliginous Germany, Norway, Worldwide GUS570537 15, 16, 36, 84
Slovenia, Spain, USA
(Eastern)
Microcyclospora pomicola Fuliginous Germany, Norway, Spain Regional GU570539 11,12,81
Microcyclospora Fuliginous Germany, Norway, Spain | Regional GUS570541 12,16, 81
tardicrescens
Microcyclospora sp. Fuliginous Spain Rare NS J.C. Batzer,
unpublished
results
Microcyclospora sp. Fuliginous Germany Rare KP400567 15
Microcyclospora sp. Fuliginous Germany Rare KP400568 9
FG1.4
Capnodiales, Hougjia pomigena Fuliginous China, USA (Eastern) Regional AY598885 129
Phaeothecoidiel-
laceae Houjia yanglingensis Fuliginous China, USA (Eastern) Regional FJ147166 129
Pussalora-like sp. FG3 Fuliginous USA (Eastern) Regional AY598926 16
Phacothecoidielln Arborescent USA (Eastern) Regional AY598879 129
illinoisensis punctate
Phaeothecoidiella Arborescent USA (Eastern) Regional AY598917 129
IMISSOUTIEnsIS punctate
Phaceothecoidiella sp. Arborescent Norway Regional KJ719560 15
N1.7E6 punctate
Translucidithyrium Flyspeck Thailand Regional MG993045 130
thailandicum
Sporidesmajora Arborescent USA (Eastern) Regional FJj147167 31,129
pennsylvaniensis punctate
(Continued)
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Table 1 (Continued)

Mycelial type Geographic region GenBank
Order, Family Species names on host reported Prevalence accession References

Chaetothyrina musarum Flyspeck Thailand Regional KX372275 54

Chaetothyrina guttulata Punctate Thailand Regional KX372277 54

Stomiopeltis sp. RS1 Ramose USA (Midwest) Regional AY598882 9

Stomiopeltis sp. RS2 Ramose USA (Midwest) Regional AY598883 9

Stomiopeltis sp. RS3.1 Ramose USA (Eastern), Spain Regional FJ147160 1,32

Stomiopeltis sp. RS3.2 Ramose USA (Eastern) Regional FJ147161 32

Stomiopeltis sp. RS3.3 Ramose Spain Rare NS J.C. Batzer,
unpublished
results

Stomiopeltis sp. RS3.4 Ramose Spain Rare NS J.C. Batzer,
unpublished
results

Stomiopeltis sp. R$4.0 Ramose USA (Eastern) Regional FJ147162 1,32

Stomiopeltis sp. RS4.1 Ramose Turkey Regional JQ358787 83

Stomiopeltis versicolor Ramose USA (Eastern) Regional FJ438375 1,32

AY160172

Stomiopeltis sp. RS6 Ramose USA (Eastern) Regional FJ425198 32

Stomiopeltis sp. RS7.1 Ramose Turkey Regional JQ358788 81

Stomiopeltis sp. RS7.2 Ramose Turkey, Spain Regional JX042483 81

Stomiopeltis sp. It-s Flyspeck Japan Regional LC190412 2

Capnodiales, Microcyclosporella mali Ridged Germany, Iran, Norway, Worldwide GUS570539 9,11, 15, 16,
Mycosphaerel- honeycomb Poland, Serbia, GUS570540 32,36,48,
laceae Slovenia, Spain, 87

Turkey, USA (Eastern)

Ramichloridium sp. RH4 Ramose USA (Eastern) Regional FJ425198 32

Ramichloridium sp. RHS Ramose USA (Eastern) Regional FJ425200 32

Colletogloenm-like sp. Fuliginous USA (Eastern) Regional AY598870 9,31

FG2
Botryosphaeriales Geastrumia polystigmatis Ramose/ Bulgaria, Spain, USA Worldwide FJ147177 32,59,61,90
Fuliginous (Eastern)

Geastrumia sp. S1 Ramose Brazil, Spain Worldwide NS J.C. Batzer,
unpublished
results

Geastrumia sp. G2 Ramose Germany, Norway Regional KR187108 15,16

Scolecobasidium musae NA China Rare JQ364738 47

Venturiales, Sym- Scolecobasidium musae NA China Rare JQ364738 47
poventuriaceae

Pleosporomycetidae

Pleosporales Scleroramularia abundans | Compact Turkey, USA (Midwest) Worldwide FR716675 73,83

speck

Scleroramularia Compact China, USA, Spain Worldwide FR716679 73

henaniensis speck

Scleroramularia asiminae Compact USA (Midwest) Regional FR716677 73

speck

Scleroramularia pomigena | Compact USA (Midwest) Regional FR716682 73

speck

Scleroramularia Compact China Regional FR716683 73

shaanxiensis speck

Scleroramularia musae Compact China Rare KRO010464 37

speck
Pleosporales sp. G1 Punctate Germany Rare KR187107 16
(Continued)
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Table 1 (Continued)

Mycelial type Geographic region GenBank
Order, Family Species names on host reported Prevalence accession References
Eurotiomycetes
Chaetothyriales Chaetothyriales sp. S1 Punctate Spain Rare NS J.C. Batzer,
unpublished
results
Chaetothyriales sp. F1 Fuliginous Turkey Rare JX014309 83
Chaetothyriales sp. S2 Ramose Spain Rare NS J.C. Batzer,
unpublished
results
Chaetothyriales sp. G6 Fuliginous Germany Rare KP400572 16
Chaetothyriales sp. G7 Ridged Germany Rare KP400573 16
honeycomb
Chaetothyriales sp. G8 Fuliginous Germany Rare KP400574 16
Chaetothyriales, Cyphellophora Ramose China Rare KP010371 37
Cyphel- phyllostachydis
lophoraceae
Cyphellophora sessilis Ramose China, Germany, Poland, | Worldwide KP400571 16,32,75,87,
Spain, USA (Eastern) 109, 137
Cyphellophora astocarpi Ramose China Rare KP010367 39
Cyphellophora musae Ramose China Rare KP010368 39
Chaetothyriales, Exophiala xenobiotica Fuliginous Germany Rare KP400575 16
Herpotrichiel-
laceae
Leptodontidium elatius Light USA (Southern) Regional AY598931 58
fuliginous
Exophiala sp. G4 Punctate Germany Rare KP400576 16
Neophaeococconyces Punctate Germany Rare KP400577 16
catenatus
Basidiomycota
Wallemiales Wallemia qianyangensis Punctate China Regional NS R. Zhang,
unpublished
results
Wallemia sebi Punctate China Regional NS 109
Wallemia longxianensis Fuliginous China Regional NS R. Zhang,
unpublished
results
Wallemia longxianensis Fuliginous China Regional NS R. Zhang,
unpublished
results

Abbreviations: NA, not available; NS, not submitted.

Phenology

Colonies on apples become visible from several weeks to several months after inoculation (27, 89,

113, 125), depending on weather and nearness to harvest. Secondary spread on a single fruit or

among several fruits can occur during subsequent wet periods (14, 93, 124). Overwintering can
apparently occur on apple fruit and other reservoir hosts (1, 17, 49). Ismail et al. (55) documented
significant interspecific differences in the timing of inoculum arrival among eight prevalent SBFS
species. In the same orchard, Batzer et al. (11) noted that certain SBFS species developed visible

colonies earlier in the fruit development period than did other species.
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Figure 2

The relationship of leaf wetness hours during the growing season to (#) the mean number of colonies of
sooty blotch and flyspeck (SBES) per apple and (b) the species richness per orchard year (14). P is the
observed significance level for rejecting the null hypothesis that the number of colonies per apple (panel z)
and the number of taxa per orchard (panel 4) can be predicted by leaf wetness; y is the predicted number of
taxa in an orchard based on leaf wetness; R? shows that leaf wetness explained 44.93% of the variation in the
number of taxa per orchard; and SEEy shows that leaf wetness predicted the number of taxa within

0.96%. Abbreviations: P, linear regression P value; R?, coefficient of determination; SEEy, standard error of
the estimate; y, species richness estimate. Figure adapted from Batzer et al. (14) with permission from the
publisher.

Environmental Adaptations

The duration of moist periods strongly impacts the activity of these surface-dwelling fungi. Many
studies have connected SBFS symptom severity to extended periods of rain, dew, or high humidity
(22, 34,101, 111), and SBFS diversity on apples may be similarly affected (Figure 2) (14). Free
water on the fruit surface promotes both mycelial growth and, in some SBEFS species, budding
of spores that can travel down the fruit in water droplets, forming new colonies in a distinctive
streaked pattern (Figure 3). Leaf wetness duration (LWD), relative humidity, and rainfall are key
weather inputs to SBFS warning systems (see the section titled Management).

Many SBEFS species have relatively broad temperature optima (13, 60), although mycelial
growth differs significantly among some species at 10°C and 30°C (13). The broad temperature
optima among prevalent SBFS species in the eastern United States may explain why temperature
is not an important input to warning systems developed for this region (22, 34).

Nutrient availability on apple fruit alters drastically during the growing season. The cuti-
cle environment is low in nutrients during the early phases of fruit development when internal
tissues are composed mainly of complex carbohydrates. As fruit mature, however, simple sug-
ars and organic acids leak through the peel to the exterior (125). This pulse of nutrients coin-
cides with a late-season upsurge in SBFS colony growth. Rapid acceleration of mycelial growth
in several SBFS species in response to apple juice has also been demonstrated experimentally
13).

The pH of the apple surface is usually ~4.0 (41, 126). The SBFS species P. fructicola grew
on media within a pH range of 4-6, but very slowly at pH < 4 or > 6 (24). In contrast,
Ramichloridium luteuwm grew across a much wider pH range (<1-8) (23). However, the optimal
pH for both species was 4, which helps to explain why they are well adapted to the apple surface
microenvironment.
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Figure 3

Drip pattern of Peltaster sp. colonies on apple fruit. This pattern occurs when budding conidia or yeast-like
conidia move downward on the fruit in rain or dew droplets.

SBEFS fungi need protection against desiccation and ultraviolet radiation on fruit surfaces. In in
vitro experiments using polyethylene glycol 6000 (PEG-6000), which is widely used for simulat-
ing drought stress (24, 65, 85), it was shown that P, fructicola grew on media amended with osmotic
potential ranging from —1.5 MPa to —4.9 MPa. R. luteum was also highly drought resistant, grow-
ing even on media with an osmotic potential of —10.3 MPa (B. Wang, personal communication).
These results suggest that SBFS is well adapted to cope with persistently dry conditions on the
waxy epicuticle. SBFS fungi deploy several adaptations to mitigate UV damage (121, 127); for
details, see below in the section titled Evolution and Adaptive Mechanisms.

Dimorphism

Several SBFS fungi, including Microcyclosporella spp. and Peltaster spp., are dimorphic, exhibiting
both hyphal and yeast-like stages (23, 24, 74). This ability enables them to respond to radical
shifts in microenvironmental conditions that occur on plant surfaces. Nutritional conditions may
contribute to morphological shifts. For example, in a low-nutrient cultural environment, such
as water agar or adjusted SNA medium not containing carbon or nitrogen sources, P. fructicola

Gleason et al.
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Figure 4

Dimorphic shifts of Peltaster fructicola between hyphal and yeast-like stages, based on results from Chen (24).
(@) Conidium. () Conidium producing germ tubes at either end on agar containing C-N source medium.

(¢) Microcyclic sporulation from germinated conidium. (d) Conidial mass. (¢) Yeast-like colony. (f) Shift from
yeast-like to hyphal colony morphology. (g) Extensive mycelial colony formed after multiple weeks in
culture. (b) Sparse mycelial colony formed on water agar or adjusted SNA (synthetic nutrient agar) medium
not containing carbon or nitrogen sources.

exhibited mainly mycelial growth, whereas adding glucose (0.5 g/L) or KNOs (1 g/L) induced
formation of yeast-like colonies (24). Fruit surface nutrition therefore can trigger morphological
shifts in at least some SBFS fungi (Figure 4).

Spatial Dynamics

Awailable evidence suggests that SBFS inoculum typically travels no more than several hundred
meters from reservoir hosts on orchard borders into apple orchards (27, 108), although inoculum
can also originate from apple or other hosts within orchards (124). Gao and coworkers used
scanning electron microscopy to track the proliferation of Zygophiala wisconsinensis colonies on
individual apple fruit, documenting the formation of sclerotium-like bodies from hyphae as
well as subsequent dissolving of intercalary hyphae (38). Preliminary evidence from Iowa field
experiments suggested that there were distinctions among SBFS species in spatial dissemination
patterns; for example, Peltaster spp., which produce blastospores on infected fruit by means of
budding, were more likely than other prevalent SBFS species to undergo secondary spread on
fruit (14, 55). Subsequently, Rosli (93) showed that Peltaster gemmifer was much more likely to
spread from apple to apple on the same tree than was the nonsporulating SBES species Stomiopeltis
sp. or the larger-celled microcyclic conidia of Microcyclosporella sp., confirming the existence of
major differences among SBFS taxa in capacity for short-distance spatial dissemination.

Biogeography

Characterizing patterns of distribution of SBFS species among orchards and geographic regions
took on practical importance with the discovery that species can differ significantly in environ-
mental optima (118), tolerance to temperature extremes (13), and sensitivity to fungicides (115).
Knowing which species are most prevalent can potentially lead to improved SBFS management,
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Frequency of occurrence of the four most commonly occurring sooty blotch and flyspeck (SBFS) fungi on apples in the (#) Lake
Constance and (b)) Lower Elbe regions of Germany (16). Abbreviations: P. cerophilus, Peltaster cerophilus; M. mali, Microcyclosporella mali
C. sessilis; Cyphellophora sessilis; S. pomi; Schizothyrium pomi. Figure adapted from Batzer et al. (16) with permission from the publisher.
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for example, by altering fungicide selection and/or developing regionally based SBFS warning
systems (16, 22, 34,94, 117, 118).

Plant pathologists and mycologists had long suspected that SBFS assemblages varied among
geographic regions (61, 111), but DNA-supported species identification has begun to clarify these
distinctions (Table 1). A study of 39 apple orchards in the eastern United States provided per-
suasive evidence that some SBFS species were ubiquitous, whereas others were regional (32). Ad-
ditional apple surveys have shown that some taxa, e.g., certain species of Schizothyrium, Peltaster,
and Microcyclosporella, are apparently worldwide in distribution (16, 32, 36, 57, 76,77, 83), whereas
others are subcontinental or local in distribution (16). The management regime clearly impacts
the SBFS assemblage; organically managed orchards may differ from conventionally managed or-
chards and abandoned orchards in both species diversity and prevalence (12, 16, 32). Studies on
several continents documented that local SBES species assemblages and prevalence patterns tend
to persist across multiple growing seasons (Figure 5) (14, 16, 55).

Host Range

SBEFS hosts include many fruits and hundreds of noncrop species. However, cross-inoculation
tests suggested that there are clear host range differences (23, 40). Gao et al. (40) revealed that
Z. wisconsinensis could be isolated from a wide range of hosts, including several in Rosaceae (ap-
ple, plum, hawthorn) and Ebenaceae (persimmon). In contrast, five species of this genus, in-
cluding Zygophiala emperorae, Zygophiala longispora, Zygophiala trispora, Zygophiala musae, and Zy-
gophiala inaequalis, were isolated from Japanese banana (Musa basjoo) fruit, but only Z. emperorae and
Z. longispora could produce colonies on apple fruit (40).

MANAGEMENT

SBEFS is an economically important disease on apples worldwide when fruit production periods
coincide with moist environmental conditions. Most management-related research has occurred
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in the eastern half of North America, where SBFS is a major apple disease under both conventional
and organic production. However, it is also a major concern on organic apples in northern Europe
and under conventional management in Brazil, Pakistan, and Korea (e.g., 17, 63, 64,106,107, 114).

Fungicides

Spraying fungicides has been a mainstay of SBFS management for 130 years. Williamson & Sutton
(124) chronicled how changes in fungicide use in the United States have impacted SBFS manage-
ment success in different eras; here, we capsulize the main historical transitions.

The first fungicide used on apples during summer and fall (the fruit development period) was
the Bordeaux mixture (a mixture of copper sulfate and lime) (66, 67). The primary target of these
sprays was often fungal fruit rots rather than SBFS, but good to excellent control of SBFS was
also noted (51). By 1910, lime sulfur was coming into use for summer sprays because it caused less
phytotoxicity than the Bordeaux mixture.

In the late 1940s and 1950s, lime sulfur gave way to new synthetic fungicides such as ferbam
and captan, alongside DDT and lead arsenate for insect-pest management. However, Groves (45)
noted that an upsurge of SBFS damage accompanied this change, in part because the inorganic
fungicides were more active against SBFS fungi. Meanwhile, growers began to tank mix fungicides
with insecticides to minimize the number of spray trips through the orchard. Lead arsenate also
enhanced the activity of captan, enabling growers to extend spray intervals 25 days longer than
with captan alone (52). The extraordinarily long residual activity of DDT and lead arsenate meant
that fewer pesticide (and thus fungicide) sprays were applied (52).

Registration of ethylene bis-dithiocarbamate (EBDC) fungicides in the late 1950s and early
1960s ushered in another era. Their primary advantage was considerably longer periods of resid-
ual (postapplication) activity than that of captan. Along with captan, EBDC fungicides were the
mainstays for SBFS management until the early 1990s. However, loss of lead arsenate and the
advent of concentrate spraying during the 1970s and 1980s undermined the effectiveness of SBFS
control. Concentrate spraying, i.e., using much higher concentrations but lower volumes of water
than in previous eras, gained favor because it saved time and money, but poorer spray coverage
led to SBFS control failures, particularly within fruit clusters and on the back sides of fruit (20).
Because of its shortcomings, highly concentrated spraying eventually lost popularity where SBFS
was a major management challenge.

The increasing use of benzimidazole fungicide against SBFS and fruit rots in the 1980s, of-
ten in combination with captan, proved to be fortuitous when the US Environmental Protection
Agency banned the use of EBDC fungicides within 77 days of harvest—effectively eliminating
their use in summer sprays. This change triggered another resurgence in SBFS-incited losses.
Subsequently, tank mixes of a benzimidazole fungicide plus captan for control of summer diseases
became common practice.

Several fungicide classes were added to the SBFS management toolbox during the past 20 years.
A number of strobilurin [also known as quinone outside inhibitor (Qol)] and succinate dehydro-
genase inhibitor (SDHI) fungicides have excellent activity against SBFS fungi, and combination
products such as pyraclostrobin (a Qol) plus boscalid (an SDHI) are recommended for prehar-
vest sprays because of relatively long residual activity (29). However, Qol and SDHI fungicides
are at risk for resistance development by many fungal pathogens of apples; thus, the number of
sprays per season is limited by label restrictions. In addition, using these newer fungicides is con-
siderably costlier per application than older products. Phosphite fungicides have been valuable
as mixing partners with captan during summer in situations where other fungicides have reached
their label-specified limit on the number of sprays per season (91).
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Warning Systems

An earlier review (42) provided a detailed timeline of the progress in developing warning sys-
tems to time fungicide sprays for SBFS. After summarizing these events, we describe more recent
advances.

Disease-warning systems are decision aids to help growers improve the effectiveness and ef-
ficiency of management practices by utilizing information about the weather, pathogen, and/or
crop. Most SBFS warning systems have used weather and crop information as inputs. With few
exceptions (117, 118), most research on SBFS warning systems has focused on fungicide spray
timing under conventional rather than organic production.

The first published work on modeling the level of SBFS risk, by Gold & Sutton (44) in North
Carolina, input parameters for disease progress, initial and residual fungicide efficacy, cost of con-
trol, and market prices for apples but did not explicitly consider weather conditions. Brown &
Sutton (22) found that the timing of the first appearance of SBFS colonies on apples could be pre-
dicted by summing the number of hours of leaf wetness (LWD) from the day on which the first-
cover fungicide spray (7 to 14 days after the last flower petals fell off) occurred until a threshold
was reached. In field trials in North Carolina, Kentucky, and Brazil, using this Brown-Sutton—
Hartman warning system saved several sprays per season without compromising SBFS control
(103, 104, 107, 124).

The Brown—Sutton—Hartman system was modified for use in other US regions. In New York,
Rosenberger et al. (92) added a rain threshold to the LWD threshold. In the Upper Midwest,
control failures that occurred when using the Brown-Sutton-Hartman system (6) triggered re-
search showing that a relative humidity (RH)-based threshold, i.e., camulative hours of RH >
97%, predicted SBFS risk more accurately than LWD (34). In field tests in Iowa, using the new
Gleason—Duttweiler warning system saved an average of 2.6 fungicide sprays per season with no
loss of SBFS control and was cost-effective for orchard sizes >1 ha (94).

In an overview of SBFS warning systems, Cooley et al. (28) questioned the value of using LWD
as an input parameter because of its high level of spatial variability in tree canopies (Figure 6) (8)
and lack of calibration standards (95). They also perceived the need for faster and more efficient
communication of spray timing advice to growers and for incorporating more site-specific
information such as cultivar, tree size, canopy density, and distance to potential inoculum sources
to improve warning system reliability and efficacy.

Organic Fungicide Programs

The increasing popularity of organically grown apples in North America and northern Europe
spurred efforts to optimize SBFS control using organically certified fungicides. Most organic tri-
als have used apple cultivars with genetic resistance to apple scab (caused by the fungus Venturia
inaequalis, whose primary infection period occurs in the springtime), focusing instead on the man-
agement of summer diseases such as SBFS and fungal fruit rots. Ellis et al. (35) compared organic
and conventional fungicide programs on scab-resistant and scab-susceptible cultivars in Ohio,
concluding that organic programs for SBFS were effective during dry summers but failed to pro-
vide acceptable control in wet summers. Several studies assessed biological control formulations
(31) and kaolin-based particle films (43, 116), but levels of SBFS suppression were often inferior
to conventional fungicides. Methionine-riboflavin and potassium bicarbonate reduced SBFS inci-
dence and severity but were insufficient to achieve commercially acceptable control in Wisconsin
(3). In Massachusetts, Cooley et al. (27) evaluated several combinations of calcium compounds
along with potassium bicarbonate and a commercial biological control formulation, with similar
results.
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Figure 6

Statistical comparison of mean daily leaf wetness duration (LWD) among 12 canopy positions in semidwarf
apple trees in orchards in Iowa, USA. (#) Summarized measurements made by LWD sensors at an orchard in
Gilbert, Iowa, during the 2001, 2002, and 2003 growing seasons. (/) Summarized measurements from four
Towa orchards in 2003. Daily data sets were partitioned into rain days (measured rainfall >0.25 mm) and
no-rain days. Dashed lines separate 1-h differences in LWD. Canopy positions that do not share the same
letters are significantly different from each other (P < 0.05) (10). Figure adapted from Batzer et al. (10) with
permission from the publisher.

In European apple orchards, SBFS is a major challenge for organic production (118). Spray
options include lime sulfur, potassium soap, and coconut soap, but the efficacy of coconut soap
has been inconsistent (114). Potassium bicarbonate formulations gave encouraging SBFS sup-
pression on scab-resistant cultivars in Germany (106) and Switzerland (114). Winter treatments
with copper or lime sulfur were evaluated to eliminate overwintering SBFS inoculum, but control
was inferior to summer application of organic sprays (118). As part of the RIMpro apple manage-
ment program, Trapman (117) developed a warning system for SBFS that incorporates relative
humidity, LWD, and cultivar information and has been widely used by organic apple growers in
Europe.
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Cultural Control

Several cultural control recommendations, designed to reduce the risk of outbreaks, date back to
the beginning of SBFS management efforts.

Site selection. A basic recommendation for SBFS management is to plant orchards on upper
slopes and wind-exposed sites. These sites dry more rapidly after wetting periods and are thus less
conducive to SBFS outbreaks (100, 102).

Pruning. Pruning opens up the tree canopy to accelerate dryoff and facilitates penetration of
fungicide sprays (52). Both dormant-season pruning (68, 89) and summer pruning (26) can reduce
SBES risk. Batzer et al. (12) showed that dormant pruning in Iowa and Wisconsin enhanced the
effectiveness of the Brown—Sutton—Hartman warning system in timing fungicide sprays.

Fungicide spray volume. Like pruning, spraying with an adequate volume of water helps to en-
sure thorough coverage of fruit and thereby more effective control of SBFS (124). Field trials by
Batzer et al. (12) reinforced the value of so-called dilute spraying (at least 935 liters/ha on mature
semidwarf trees) to ensure the effectiveness of the Brown-Sutton-Hartman warning system.

Cultivar selection. SBFS colonies are more visible on yellow or green cultivars than red ones
(7, 25, 51). Russeting on the fruit surface, which is characteristic of some apple cultivars, sup-
presses SBFS colony development (18). Maturity date also exerts a major influence: short-season,
early-maturing cultivars are less likely to develop SBFS infections than later-maturing cultivars.
This trend holds true across a wide range of scab-susceptible, scab-resistant, and cider cultivars
(Figure 7) (19, 86, 106). Early-maturing cultivars may escape SBFS because there is insufficient
time during the fruit development period to allow for colony development (19).

Management of reservoir hosts and fruit mummies. Conidia from SBEFS species probably
travel no more than a few hundred meters on air currents, so it is likely that inoculum for SBFS
outbreaks originates within or near orchards (27, 112). In the southeastern United States, Hickey
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Figure 7

Influence of harvest date on severity of sooty blotch and flyspeck for more than 60 scab-resistant apple
cultivars and selections in the Lake Constance region of Germany (106). Figure adapted from Spith & Mayr
(106) with permission of the publisher and the authors.
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Figure 8

Colonies of a Peltaster sp. on apple cultivar Dalinbel associated with an overwintered fruit mummy in an
organically managed orchard in northern Germany.

(52) and Sutton et al. (113) recommended mowing commonly occurring reservoir hosts, such as
Rubus spp., near orchard borders during the fruit development period to reduce SBFS risk on
apples; however, there is no experimental evidence to support this recommendation.

Several apple cultivars retain dried fruit that was aborted at various stages of development
(mummies); these mummies can persist on the tree for up to three years (Figure 8) (17). In
Germany, Beer et al. (17) demonstrated that the mummy-retaining cultivar Dalinbel had a higher
incidence of SBFS than the nonretaining cultivar Topaz, although both matured at the same time.
In their field trials, removal of mummies reduced the incidence of the SBFS fungus Pelraster
cerophilus on cv. Dalinbel.

Fruit bagging. Placing apples in two-layer bags during the fruit development period is a
widespread practice in China and Japan. The bags protect the fruit from certain pathogens (in-
cluding SBFS fungi) and pest insects. The opaque outer layer is removed several weeks before
harvest to allow the fruit to develop their normal mature color. This strategy has been highly
effective in protecting fruit quality but has several limitations. One constraint is that bagging is
highly labor intensive. In addition, the widespread use of bagging in Chinese orchards has trig-
gered an upsurge in black spot and fruit rot caused by the fungal pathogen Tiichothecium roseum
(30); these diseases occur only on bagged apples.

Postharvest dip treatments. Postharvest dip treatments with various surfactants can remove
SBEFS colonies, suppress other postharvest pathogens, and kill human pathogens. Multiple dip
solutions, from chlorine bleach to sodium bicarbonate and various fruit soaps, followed by
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brushing remove most but not all SBFS colonies, and removal success varies among SBFS species

(5,11, 50).

EVOLUTION AND ADAPTIVE MECHANISMS

Recent research has clarified how SBFS fungi evolved and how they adapted to their unique
plant-surface niche. Ismail et al. (55) used ancestral state reconstruction to determine whether
SBES species arose from parasites, saprophytes (i.e., fungi that feed on dead plant material), or
both. They examined two genes: (#) the 28S region of the nuclear ribosomal DNA (28S rDNA),
which is widely used for assessing evolution of symbiosis in Ascomycota (98), and (b)) the RNA
polymerase II subunit gene (RPB2), which is a single-copy protein-coding gene with a slow rate
of sequence divergence that allows it to reliably resolve deep phylogenetic relationships in the
Dothideomycetes (98). Each set of gene sequences was generated from 23 SBFS species from 15
genera, mostly in the order Capnodiales. These were aligned with sequences obtained from plant-
penetrating parasites (PPPs) and saprophytes from seven families within the Dothideomycetes.
The PPPs and saprophytic fungi were selected based on BLAST (basic local alignment search
tool) nucleotide searches, using the 28S rDNA that showed high similarity to SBES species (56).
Phylogenetic trees were constructed separately for the 28S ribosomal DNA region and the RNA
polymerase II gene (RPB2) data sets using Bayesian analysis. A Bayesian ancestral state recon-
struction using a Markov chain Monte Carlo (MCMC) analysis showed a high level of support
for plant-penetrating parasitism as the ancestral state of SBFS fungi (Figure 9). This conclusion
was strongly supported by phylogenomic studies documenting evolutionary divergence of SBFS
species from hemibiotrophic relatives (121, 127).

These latter studies documented reductive evolution from plant-penetrating parasitism to
SBFS’s plant-surface niche. A drastic reduction in the number and activity of genes involved in
plant cell wall degradation, secondary metabolism, and secreted peptidases and effectors accom-
panied a loss of the ability to penetrate and colonize living cells (121, 127, 128) (Figure 10).
However, genes facilitating survival on plant surfaces were more numerous and/or active than
in necrotrophic or hemibiotrophic fungi. For example, genes responsible for the production of
cutinases and secreted lipases, which are associated with breaking down the cuticle components
cutin and epicuticular waxes, respectively, were either retained or increased markedly in num-
ber in comparison to PPP species (121, 127). On the basis of a transcriptomics analysis, Wang
et al. (121) noted four additional stress-response mechanisms that help the SBFS species R. Ju-
tewm to thrive on plant surfaces: melanin, lysozymes, aquaporin, and the HOG pathway. Melanin,
whose production by P. fructicola was documented by Xu et al. (127), protects fungi from UV
irradiation, high temperatures, and desiccation. Lysozymes break down peptidoglycans in bac-
terial cell walls, conferring a competitive advantage over phyllosphere bacteria (88). Aquaporins,
which are membrane proteins that enhance tolerance to osmotic stress, were highly upregulated in
R. luteum. Finally, the high osmolarity glycerol (HOG) pathway, a signaling pathway associated
with response to osmotic stress (136), was active in this SBFS species. Revealing this diverse suite
of adaptations and gene losses has dramatically advanced understanding of the evolutionary jour-
ney of SBFS fungi.

To gain a broader perspective on the evolution of SBFS fungi, Xu et al. (127) conducted com-
parative genome analyses pairing three taxonomically diverse SBFS species in the order Cap-
nodiales with three closely related PPP species. As with P. fructicola (127) and R. luteum (121),
these three SBFS species had considerably smaller genomes than their PPP counterparts and
were relatively deficient in genes associated with plant-penetrating parasitism. The Xu et al. (127)
study strengthened the evidence that evolution to the SBFS niche has occurred independently in
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Figure 9 (Figure appears on preceding page)

RPB2 phylogeny with a Bayesian Markov chain Monte Carlo analysis of ancestral state reconstruction of ecological niches of sooty
blotch fungi and related taxa. Posterior probabilities for each of three niches—sooty blotch and flyspeck (purple; referred to here as
epiphytic, now known as ectophytic), plant-penetrating parasitic (green; referred to here as plant parasitic), and saprophytic (b/ue)—are
represented in pie charts at each reconstructed node (55). Abbreviation: SBFS, sooty blotch and flyspeck. Figure adapted from Ismail
et al. (55) with permission from the publisher.
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multiple Ascomycete taxa. Despite genomic differences among these five SBES species (121, 127,
128), their similarities suggested convergent evolution toward low-energy lifestyles associated
with the austere environmental conditions (62) on plant surfaces.

Scanning electron micrograph images of P. fructicola and R. luteum showed that SBFS fungi
could partially dissolve the subtending cuticle and become embedded in it (Figures 11 and 12)
(121,127). This finding was contrary to Belding et al.’s (18) conclusion that P, fructicola was unable
to degrade the apple cuticle. Three possible advantages to embedding in the cuticle rather than
simply perching atop it include (#) increased access to nutrients, primarily sugars and organic acids
that leak from fruit as they mature (127), (b)) firmer attachment by the fungus to the hydrophobic
fruit surface, reducing the risk of washoff (127), and (¢) less exposure to environmental extremes.

Epiphytes can multiply and grow on the surface of healthy plants without exerting any adverse
impacts on the host (70). Along with cutinase and secreted lipase production, the visual evidence
of cuticle degradation supports Xu et al.’s (127) view that SBFS fungi occupy an ecological niche as
ectophytes rather than epiphytes. Ectophytes, unlike epiphytes, can penetrate the nonliving sur-
face layers of plants (e.g., the epicuticular wax layer and the cuticle). Like epiphytes, however, ecto-
phytes do not penetrate the living cells underlying the cuticle. This ectophytic niche may be unique
among phytopathogenic fungi. Xu et al. (127) note that the evolutionary story of the SBFS com-
plex does not fit the generalization that saprophytic fungi were the ancestors of hemibiotrophic
plant pathogens, which then evolved into either necrotrophs or obligate biotrophs (105). Instead,
SBEFS fungi took a different evolutionary road to reach their plant-parasitic niche: from PPPs to
ectophytes. Xu etal. (127, 128) and Wang et al. (121) contended that SBFS fungi are a distinct type
of biotroph, requiring live hosts from which they extract essential nutrients, but without killing,
or even invading, host cells or tissues (Figures 13 and 14). Available evidence indicates that SBFS
fungi deploy few elicitors, none of which contact living cells, so they do not trigger host defense
responses. They are therefore true stealth pathogens, permanently undetected by plant hosts.

The evolutionary forces driving SBFS fungi from a plant-penetrating niche to an ectophytic
niche are unclear. However, this change may have enabled them to escape host specialization and
thereby survive during periods of rapid environmental change.

OUTLOOK

Major segments of the SBES disease cycle remain undescribed. Knowledge of the timing of sporu-
lation and dissemination is nonexistent for almost all species (27, 112). Coupling spore trapping
with DNA-based species identification could (#) clarify how weather conditions influence species-
specific spore release and dissemination patterns, (b) resolve persistent questions about the primary
sources of SBFS inoculum for orchard outbreaks, and (c) determine whether management of reser-
voir hosts along orchard borders can be effective as an SBFS management strategy.

Processes that govern growth and dissemination of SBFS colonies on fruit are likewise poorly
understood. Gao et al. (40) described the ramifications and subsequent dissolution of hyphae that
occur in successive waves of colony enlargement, but the genetic mechanisms underlying these
processes remain obscure. Rosli (93) determined that P, fructicola produced abundant single-celled
secondary conidia on apple surfaces and readily spread from fruit to fruit by means of splash
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Figure 10

Plant pathogenicity-related protein-coding genes in six species of fungi investigated by Xu et al. (128).

(@) Membrane transporters. ABC transporters, MFS transporters, and all other transporters (dark blue) are
shown. (b) Secreted proteins (SPs), including peptidases, candidate secreted effector proteins (CSEPs), and
all the other SPs. (¢) Plant cell wall-degrading enzymes, including cutinases, degrading enzymes for pectins,
hemicelluloses, both pectins and hemicelluloses, and both celluloses and hemicelluloses. (d) Secondary
metabolite biosynthesis core enzymes, including PKSs, NRPSs, PKS-NRPSs, DMAT'Ss, and TCs.
Mycosphaerella madeirae (Mycma) and Teratosphaeria nubilosa (Ternu) cause necrotic leaf spots on eucalyptus
foliage, and Zasmidium citri (Zasci) causes leaf and fruit lesions on most citrus and related hosts. In contrast,
Microcyclosporella mali (Micma), Zasmidium angulare (Zasan), and Microcyclospora pomicola (Micpo) are SBFS
species that colonize the surfaces of apples. Abbreviations: ABC, ATP-binding cassette; DMAT'S, dimethyl
allyl tryptophan synthase; HYBRIDs, the hybrid PKS-NRPS gene; MFS, major facilitator superfamily;
NRPS, nonribosomal peptide synthase; PKS, polyketide synthase; TC, terpene cyclase. Figure adapted from
Xu et al. (128) with permission from the publisher.

dispersal, whereas two other SBES species with differing reproductive strategies showed less or
no secondary spread. However, the dynamics of the proliferation of other SBFS species within
orchards are unknown. Surup et al. (110) and Venkatasubbaiah et al. (119) reported finding my-
cotoxin production in SBFS fungi, but the nature of the interactions of these fungi with other
plant-surface microflora has not been investigated.
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20 pm 10 pm

Figure 11

Degradation of the cuticle proper beneath sclerotium-like bodies of Peltaster fructicola on apple fruit (127). (#) Cuticle degradation
under scanning electron microscopy. () Cross sections showing degradation of the cuticle. Abbreviations: CP, cuticle proper; EC,
epidermal cell; ET, eroded trace; HY, hypha. Figure adapted from Xu et al. (127) with permission from the publisher.

Figure 12

Scanning electron microscopy showing disappearance of waxy crystals around a hyphal network of
Ramichloridium luteum (121). This disappearance indicates that R. futeum can efficiently degrade apple wax.
Figure adapted from Wang et al. (121) with permission from the publisher.
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Inferred colonization pattern of Peltaster fructicola on apple fruit (127). (#) Overhead view of P. fructicola growing on the fruit surface.
(b) Lateral view of P. fructicola growing on the fruit surface. Figure adapted from Xu et al. (127) with permission from the publisher.
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Schematic representation of a hypothesis for the evolutionary route of sooty blotch and flyspeck fungi (127). Abbreviations: AP,
appressorium; BH, biotrophic hyphae; HA, haustorium; NH, necrotrophic hyphae; PCWDE, plant cell wall-degrading enzyme; PMP,
primary metabolism pathway; PPG, plant pathogenicity-related gene; SBES, sooty blotch and flyspeck; SMP, secondary metabolism
pathway; SP, spore. Figure adapted from Xu et al. (127) with permission from the publisher.
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There are compelling public health and environmental rationales to seek effective alternatives
to the use of fungicides as the mainstay of SBFS control. Recent advances in teasing apart SBFS
species complexes and uncovering adaptive strategies create a foundation for finding effective
alternative control strategies that reduce or eliminate the need for chemical fungicides.

The hypothesis that colonization of the fruit surface by SBFS fungi does not alert host defenses
lacks conclusive proof at this point, despite evidence that the SBFS fungi do not produce the types
of enzymes associated with host-pathogen chemical combat. It would be useful to pursue omics
studies from the host side to test this noncombatant hypothesis.

Finally, the evolutionary position of SBFS fungi among fungal epiphytes, which are located pri-
marily in Dothideomycetes, needs clarification. Available evidence suggests that rock-inhabiting
fungi in Chaetothyriomycetes were ancestral to other fungal epiphytes, including SBFS, in Doth-
idiomycetes (46, 96) and that other nutritional guilds emerged after fungi began to colonize plants
(53). However, evolutionary relationships among major groups of fungal epiphytes and ectophytes,
e.g., sooty molds, black dots, black mildews, and the SBFS complex, remain to be resolved.
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