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Abstract—Agriculture is facing severe challenges from
crop stresses, threatening its sustainable development and
food security. This work exploits aerial visual perception
for yellow rust disease monitoring, which seamlessly inte-
grates state-of-the-art techniques and algorithms including
UAV sensing, multispectral imaging, vegetation segmen-
tation and deep learning U-Net. A field experiment is de-
signhed by infecting winter wheat with yellow rust inoculum,
on top of which multispectral aerial images are captured
by DJI Matrice 100 equipped with RedEdge camera. Af-
ter image calibration and stitching, multispectral orthomo-
saic is labelled for system evaluation by inspecting high-
resolution RGB images taken by Parrot Anafi Drone. The
merits of the developed framework drawing spectral-spatial
information concurrently are demonstrated by showing im-
proved performance over purely spectral based classifier
by the classical random forest algorithm. Moreover, various
network input band combinations are tested including three
RGB bands and five selected spectral vegetation indices
by Sequential Forward Selection strategy of Wrapper algo-
rithm.

Index Terms—Deep learning; Multispectral image; Pre-
cision agriculture; Semantic segmentation; U-Net; Un-
manned Aerial Vehicle (UAV).

|I. INTRODUCTION

Visual perception is to interpret the environment by the
light (in the form of images captured by various cameras)
reflected by the objects via image analysis [1] and is now
finding a wide range of applications in smart society (e.g.
transportation surveillance [2], aircraft detection [3], smart
health [4], industrial inspection [5]). Following this line of
thought, this work aims to exploit aerial visual perception in
smart farming to tackle the grand challenge facing modern
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agriculture: feeding a growing world population with an ageing
structure while protecting the environment. This is achieved
by developing a disease monitoring framework for precision
stress management. To this end, this work proposes an auto-
mated monitoring framework for yellow rust disease in winter
wheat by seamlessly integrating deep learning algorithms and
multispectral aerial images collected by a small Unmanned
Aerial Vehicle (UAV) at an experimental wheat field.

Wheat is the most widely grown crop in the world, provid-
ing 20% of protein and food calories for 4.5B people. Its de-
mand is also increasing with a growing world population (60%
more by 2050 with a predicted population of 9B). However,
wheat production is now facing a number of challenges from
abiotic stresses, pathogens and pests due to climate changes.
Among them, wheat yellow (or stripe) rust, caused by Puccinia
striiformis f. sp. tritici (Pst), is a devastating wheat disease
worldwide, particularly in regions with temperate climates
[6]. This disease develops and spreads very quickly under
favourable environmental conditions such as a temperature of
5-24°C, a moderate precipitation in spring. It is estimated that
yield loss caused by yellow rust disease is at least 5.5 million
tons per year at a global level.

An accurate and timely monitoring of yellow rust disease
plays a paramount role in its precision management, paving
the way for sustainable crop production and food security
[7]. In particular, the disease mapping enables a timely and
precise fungicide application so that its adverse effects can be
effectively minimised with a reduced use of pesticides com-
pared to conventional uniform spraying strategy. Besides, the
automated disease monitoring system can also help breeders in
selecting suitable wheat genotypes that are resistant to yellow
rust disease in breeding programmes. Rust disease usually
leads to some physical and chemical changes on wheat leaves
including ChlorophyII content reduction, water loss, and visual
rust symptoms (i.e. yellow-orange to reddish-brown spores).
These changes can be effectively captured by spectral sensors
(e.g. optical cameras) or human eyes. The current practice of
disease monitoring relies on visual inspection via naked eyes
[8]. This approach is accurate, however, is time-consuming,
labour-intensive, costly and not suitable for applications at
field scales [7] due to a large number of required sampling
points. Therefore, there is a trend to adopt imaging approaches
for an automated crop disease monitoring in recent years.

Various types of sensors have been investigated for disease
monitoring in the literature: from low-cost RGB visual [9] to
high-cost hyperspectral camera [6] and from ground proximity
sensing [10] to aircraft (or even satellite) remote sensing [7].
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In particular, among various sensing platforms, UAV remote
sensing with a user-defined spatial-temporal resolution, a low
cost and a high flexibility is drawing increasing popularity for
applications at farmland scales and has been applied widely
since 2010 in many areas such as disease monitoring [6], weed
mapping [11, 12], and stress detection.

There are also several studies on UAV remote sensing for
yellow rust disease monitoring. RGB image is adopted in [9]
at an altitude of 100m, which shows that Red is the most
informative visible band. Five-bands multispectral image is
applied in [7, 8] at an altitude of about 20m; it is shown that
Red and NIR bands are most effective and their normalized
difference NDVI results in even better performance. Hyper-
spectral imaging is also used in [6] at a flight height of 30
m, where the problem of yellow rust monitoring is cast as
an image level (3D image block) classification and is solved
by advanced Convolutional Neural Network (CNN) classifier.
Multispectral camera is used in this study since it has visible-
NIR bands and is easy to operate.

Semantic segmentation, different from image level clas-
sification (generating only one label for the whole input
image), is to classify input image into a number of class
labels for each pixel. This technique is especially preferred in
applications such as remote sensing [13] and biomedical image
analysis [14]. Traditional ways for semantic segmentation
include point, line and edge detection methods, threshold-
ing, region-based, pixel-based clustering and morphological
approaches. Recently, the challenging crop stress monitoring
task is also formulated as a semantic segmentation problem
and addressed by using CNN due to its strong ability in
automatically extracting spectral-spatial features. For instance,
the so-called Pixel-based CNN is applied in [15] for satellite
image classification, where the class label at each pixel is
derived by classifying the neighbouring patch centred at the
pixel by CNN. To avoid selecting a suitable patch size and
reduce the computation load, a Fully Convolutional Network
(FCN) is applied in [11] for weed mapping by using RGB
aerial image and is shown to outperform the Pixel-level CNN.
The encoder-decoder cascaded CNN, SegNet, is also applied
in [12] for weed mapping by using multispectral image. Very
recently, the state-of-the-art U-Net is applied in [10] for leaf
level disease segmentation of cucumber leaf with promising
performance. U-Net and mask R-CNN [16] are compared [13]
for tree canopy segmentation by using UAV RGB image at
30m. To summarize, the following observations are presented
to motivate the research in this study:

(i) RGB image only possesses three visible bands (Blue,
Green and Red), and its image quality is easily suscep-
tible to environmental variations [9] in comparison to
multispectral image with an accurate calibration panel;

(i) Disease monitoring based on purely spectral information

[7], may lead to a high proportion of false positives due
to the spatial inhomogeneity;

Pixel-level CNN is effective in extracting spectral-spatial
features [6], [15], however, patch size is empirically
determined and it also involves a high computation load;
Semantic segmentation based on FCN (e.g. FCN-8 [11],
SegNet [12], U-Net [16]), is proved to be effective in

(iii)

@iv)

a number of crop stress monitoring, however, its perfor-
mance is yet to be assessed for yellow rust disease.

Therefore, this work aims to develop an automated yellow
rust disease monitoring framework by integrating UAV remote
sensing, multispectral imaging, and deep learning U-Net al-
gorithm. The developed framework is initially validated by
real-life field experiments with promising performance, where
aerial images and ground data are collected on wheat field
infected by yellow rust disease. To the best of the authors’
knowledge, this work is the first attempt to integrate deep
learning U-Net, UAV multispectral and RGB images to address
the problem of wheat yellow rust monitoring. To be more
precise, the main contributions are summarized as below.

(1) A wheat yellow rust monitoring framework is proposed
by integrating UAV remote sensing, multispectral imaging
and U-Net deep learning network;

(2) The advantages of using all five spectral bands are tested
against only using three RGB bands and selected SVls;

(3) Deep learning algorithms are tested against spectral
based classifier by the classical random forest algorithm;

(4) Field experiments are designed to generate an open-
access dataset, against which the developed framework
is initially validated with promising performance.

Il. EXPERIMENT DESIGN
A. Field experiment setup

Field experiments are carried out in 2019 at Caoxinzhuang
experimental station of Northwest Agriculture and Forestry
(A&F) University, Yangling, Shanxi Province, China. Some
background information about this region such as geographic
location, soil property and climate is referred to [8]. Xiaoyan
22, one wheat variety susceptible to yellow rust disease,
is chosen. In order to inoculate wheat plants with yellow
rust inoculum, the mixed Pst races (CYR 29/30/31/32/33)
are applied to wheat seedlings in March/2019 by using the
approach described in [9]. As displayed in Fig 1 (letters A, B,
and C denote three replicates; numbers 0-5 represent different
levels of yellow rust inoculum), each plot (2m x 2m) in each
replicate is randomly inoculated with one of the six levels
of yellow rust inoculum: Og (health wheat plots for blank
comparison), 0.15g, 0.30g, 0.45g, 0.6g and 0.75g respectively.
The 18 wheat plots are well separated from each other by
healthy wheat to minimise disease cross-infection.

B. Multispectral imaging and data pre-processing

In this study, a commercial off-the-shelf DJI Matrice 100
(M100) Quadcopter (DJI Company, Shenzhen, China) and
a five-band multispectral visible-infrared camera (RedEdge,
MicaSense Inc., Seattle, USA) (see [8] for its specifications
such as weight, dimensions, image size) are integrated to be
the UAV imaging platform for yellow rust disease monitoring.
The flowchart of aerial imaging and image pre-processing
steps is displayed in Fig 2.

Data collection is done on 02/May/2019, when yellow rust
symptoms are visible as shown in Fig 3. The UAV flight
height is set to be 20m above ground, where the image
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Fig. 1. Layout of wheat yellow rust disease experiment: three replicates
(column-wise) with various levels of yellow rust inoculum (left); false-
color RGB image of the wheat field at diseased stage on 02/May/2019.
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Fig. 2. UAV-Camera system for aerial imaging and image pre-
processing: DJI M100 (No 1), RedEdge multispectral camera (No 2);
Downwelling light sensor (No 3), reflectance calibration panel (No 4);
Pix4DCapture APP for flight trajectory planning (No 5); Sidelap and
overlap (No 6), flight track and imaging points (No 7); Pix4DMapper on
desktop for image calibration and stitching (No 8).

ground spatial resolution is about 1.3 cm/pixel. Pix4DCapture
planning software (Polygon for 2D maps) installed on a
smartphone is used to plan, monitor and control the UAV. The
flight track (No 7 of Fig 2), UAV forward speed (about 1 m/s)
and camera triggering (see the dots in No 7 of Fig 2) are
designed so that image overlap and sidelap (No 6 of Fig 2) up
to 75% are achieved for an accurate orthomosaic in follow-up
image processing in Pix4DMapper (No. 8 of Fig 2). Before
the flight (each flight in real-life applications), reflectance
calibration panel (No 4 of Fig 2) is imaged at 1m height so
that an accurate reflectance data can be obtained even under
environmental variations. As displayed in Fig 3, RedEdge
camera equipped with GPS module can capture five narrow
bands simultaneously including Blue, Green, Red, RedEdge
and NIR. In addition, the necessary information for image
stitching are also embedded in each image such as camera
information and position/altitude information.

Upon image collection, a number of image preprocessing
steps are then performed offline to produce calibrated and

Red band RedEdge band
Fig. 3. Example image including RGB image taken by a small Parrot
Anafi Drone at 2m above ground and five narrow bands taken by multi-
spectral RedEdge camera on-board DJI M100 at 20m above ground.

NIR band

georeferenced reflectance data for each spectral band. These
steps are conducted in Pix4Dmapper software of version 4.3.33
(No 8 of Fig 2) including initial processing (e.g. keypoint
computation for image matching), orthomosaic generation and
reflectance calibration for each band [7]. The outputs are five
GeoTIFF images of the covered area (No 9 of Fig 2), where the
region of interest (ROI) can be cropped for follow-up analysis.

C. Data labelling

The challenge of monitoring and quantifying yellow rust
disease in wheat field is formulated as a supervised multi-
class classification problem. There are generally three classes
in total in the region of interest, including plants with visible
yellow rust lesions (Rust), healthy wheat (Healthy) and back-
ground pixels (Backg, i.e. non-vegetation soil background).
In order to accurately and effectively label the multispectral
image at pixel-level, a labelling flowchart is proposed, shown
in Fig 4.

Rust/No-
rust regions

& \ Rust region

labelling
Calibrated L False-color Imace
five bands RGB labfl
SVI: Vegetation 4&%’
OSAVI segmentation Background

Fig. 4. Flowchart of data labelling combining rust region labelling and
wheat vegetation/background segmentation.

As shown in Fig 4, the labelling of multispectral image or-
thomosaic relies on high-resolution proximity sensing images
for visual inspection. To this end, Parrot Anafi Drone (see Fig
4) equipped with 4K HDR camera is adopted to manually take
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downwards images for all 18 wheat plots. Then the steps for
multispectral image labelling is summarized in Algorithm 1.

Algorithm 1: Multispectral image labelling
Input: 5 bands and 18 RGB images by Parrot Anafi.
Output: label image for each pixel.

(i) Generate false-color RGB image from the calibrated Red,
Green and Blue bands; label the rust regions by Matlab
ImageLabeler by inspecting the RGB images taken by
Parrot Anafi, generating rust regions Rp,s: and non-rust
regions RyonRusts

(i1) Calculate the classical Optimized Soil Adjusted Vegeta-

tion Index (OSAVI) [17] from the calibrated five bands,

based on which vegetation segmentation is performed by
the classical thresholding [18] to generate wheat regions

Rwheqt and non-wheat regions Ry,onwheats

Obtain yellow rust infected wheat pixels Pgryst, healthy

wheat pixels Ppcqity, and background pixels Ppqcrg by

the following formula

(iii)

PRust = RRust n RWheat
PHealty = RnonRust N RWheat . (l)
PBackg = RnonWheat

I1l. RUST MONITORING SYSTEM

The task of yellow rust disease monitoring in wheat field
is cast as a supervised pixel-wise classification problem with
three classes including Rust, Healthy and Backg. The proposed
framework relies on U-Net for semantic segmentation, where
the flowchart is displayed in Fig 5

ol
it
-‘ C . ]
A
Blue Green R?d RedEdge NIR
[ 1
5 RGB- 3 RGB 5 selected | Network
| NIR bands bands SVIs inputs
el U-Net
T Validation Model
Tile U-Net selection
generation training
Model
test

Fig. 5. Flowchart of U-Net based yellow rust semantic segmentation.

The top five images are the five calibrated bands for the
RolI; the bottom left image shows the spatial split (instead of
random split to test its spatial generalization) of the labelled
image into training, validation and testing sub-images. Then

training image tiles are generated from the training sub-image
on the basis of data augmentation. Then U-Net is trained
and validated to select the suitable model, which is further
tested by using testing sub-image. More technical details are
presented in below subsections.

A. U-Net design

The deep Convolutional Neural Network (CNN) for se-
mantic segmentation is mainly based on U-Net, which is
originally developed for biomedical image segmentation [19].
U-Net is one type of FCN [14], where no fully connected
layer is used but rather based on convolution, ReLU, pooling,
Up-sampling and skip connection to reduce the number of
parameters for training. U-Net can take images of different
sizes as its inputs and can be trained end-to-end (i.e. input:
image and output: labelled image) from very few images.
These characteristics are very suitable for yellow rust disease
monitoring in agricultural fields due to the high cost (in terms
of time and finance) in acquiring and labelling a large dataset.
To make the work self-contained (in addition, the U-Net in
this study is slightly different from the original one in [19]),
the structure of U-Net is displayed in Fig. 6.

As shown in Fig 6, U-Net consists of a contracting path
and an expansive path, where each colour block denotes a
module of the network. In particular, for image input layer,
zerocenter normalization (e.g. dividing each channel by its
standard derivation once it has been zero-centred) is applied;
each convolution process is activated by a Rectified Linear
Unit (ReLLU) activation function; the size of convolution kernel
is 3 x 3 with stride [1 1] and ‘same’ padding; the size of max-
pooling kernel is 2 x 2 with stride [2 2] and zero padding; the
size of final convolution kernel is 1 x 1 with stride [1 1] and
‘same’ padding. The number below each block represents the
size of the output image of the layer; the number above each
block is the thickness of the layer. The input of the U-Net is
multispectral image of image size [256, 256, No. of bands]
and the output is an image with three channels representing
the three classes. Considering that the number of pixels for
different classes are unbalanced (making the network tend to
have a low accuracy on the class with fewer samples), class-
weighted cross-entropy loss function is adopted with weights
inversely proportional to their frequencies

1
L=~ 30ty i wiTuilog(Ys) @

where N, K, w are number of observations, number of classes
and class weight; Y, T" are predicted scores and training targets.

B. Network inputs

In U-Net based semantic segmentation, various network
inputs from the original five calibrated bands are compared.

Inputs A: Five RGB-NIR bands from RedEdge camera
including Blue, Green, Red, RedEdge and NIR are used.

Inputs B: Three RGB bands including Blue, Green, Red
are used. This is to demonstrate whether multispectral image
with additional RedEdge and NIR band can provide better
performance over conventional visible RGB image.
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Fig. 6. The structure of the U-Net deep learning framework.

Input C: Five selected SVIs are tested. This is to show
whether certain mathematical manipulations of raw bands
(feature generation and selection) can further improve the
performance over using raw five calibrated bands. More details
(such as motivations and strategies) regarding Inputs 3 are
given as below.

It has been shown in a number previous studies that some
SVIs calculated from five spectral bands can provide an
even higher discriminating ability in separating yellow rust
diseased wheat from healthy wheat [8]. Therefore, it would be
interesting to test whether better performance can be achieved
by changing the network inputs from five original bands to
other band combinations. To this end, in addition to the five
raw calibrated bands, 18 widely used SVIs [7] are calculated
and pooled with the raw five bands as the 23 candidate
feature inputs. Then Sequential Forward Selection (SFS), one
typical search strategy for wrappers based feature selection
(see, review paper [20] for various feature selection methods),
is adopted to identify the optimal band combinations (top 5
bands). In this approach, bands are sequentially added into
the feature set, where the evaluation metric for adding a new
band is the Out-of-Bag (OOB) error of random forest (RF)
classifier. SFS with RF is summarized in Algorithm 2 [21]

Algorithm 2: SFS with RF for band selection

(a) Start with an empty set By = (}, k = 0 with full band set
B= {bla"' 7bd};
(b) Choose the next best band b+ via
bt = argmin OOBErr(B), Ub),
be(B\By)
where OOBErr(Y) denotes OOB error with band set Y';
(c) Update band set By 1 = By UbT with k = k + 1;
(d) Repeat Steps (b), (c) until termination rules (i.e. objective
function evaluation limit, time limit) are satisfied.

is labelled for algorithm evaluation. In particular, the image
is spatially split into three sub-images for algorithm training,
validation and testing. However, the training image is still too
large to be segmented directly by using existing CNNs and
their associated hardware. To effectively and efficiently exploit
the labelled image, a large number (1600 in this work) of small
image tiles of size [256 256] are randomly generated from
the labelled training image, where image overlap is allowed.
In image tile generation, data augmentation techniques (e.g.
affine transformation from input x to output y: y = Wax + b)
are also deployed to avoid the problem of overfitting and as to
improve algorithm generalization to new scenarios [22], which
include rotation within [-5 5] and scaling within [0.95 1.05] to
account for various image resolutions. It is noted that online
augmentation is applied on the mini-batches during training
to avoid storage explosion.

The (empirically) parameter settings in optimization pro-
cedure are kept the same across different network inputs,
which are summarized in Table I. The objective function is the
widely-used cross entropy loss with class weighting (see, Sec-
tion III-A). Regularization and drop-out are also used to tackle
the problem of overfitting (i.e. improve model generalization).
The hardware for network training is a GPU server equipped
with an Intel(R) Xeon(R) Gold 6134 CPU@3.40GHz and
an NVIDIA Tesla P100-PCIE-12GB GPU. The U-Net model
is built and implemented in Matlab 2019a by using Deep
Learning Toolbox, Image Processing Toolbox and Computer
Vision Toolbox.

C. Network training

In this study, hundreds of multispectral images (see No 7 of
Fig 2) are calibrated and stitched into one large image, which

TABLE |
U-NET NETWORK PARAMETERS
Optimizer No. Class Momentum Learn rate (LR)
SGDM 3 0.9 0.01
LR drop period | LR drop rate | L2Regularization max Epochs
1 0.7 0.001 8
Mini-Batch size Validation frequency Tiles per epoch
16 5 1600
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D. Performance metrics
To quantitatively evaluate the performance of various ap-
proaches, some widely used metrics [12] are adopted,
TP,
TP.+ FP,’
TP,
Recall, = —————— 3)

T TE + FN,
File) = 2 Precision. x Recall,

Precision, =

X
Rrecision. + Recall,

where True Positive (TP) denotes the scenario where the
actual class is positive and the predicted class is also positive
(i.e. correctly predicted positive values); False Positive (FP)
represents the falsely predicted positive values; and False
Negative (FN) is falsely predicted negative values. Metric,
implies the metric value for class c. In particular, these metrics
can effectively handle data with uneven class distributions.
In addition to the above metric, computation time is also
compared to assess the computation load where appropriate.

IV. EXPERIMENTAL RESULTS

This section presents the comparative experimental results
for various algorithms. Data labelling is first introduced, where
the step-by-step results are shown in Fig 7. In particular,
OSAVI is first applied to segment wheat pixels (white) from
background pixels (black) with a threshold of 0.76 (manually
determined). Then rust regions (light blue) are manually
labelled in Matlab 2019a, based on which the labelled image
is obtained by following the remaining steps in Algorithm 1.
The labelled dataset is then applied for algorithm evaluation.

Backg

Healthy

Rust

Fig. 7. Result of data labelling: wheat segmentation (left); rust region
labelling (middle) and labelled image overlay on RGB image.

A. U-Net with various inputs

U-Nets with three different input band combinations (see,
Section III-B) are compared. In particular, the SVIs sequen-
tially selected by Algorithm 2 are shown in Fig 8, where
the vertical axis represents the out-of-bag error of random
forest classifier based on the sequentially selected bands (2000
samples for each class are randomly selected for performance

calculation by random forest classifier). Then the top five
SVIs are selected including OSAVI (Red-NIR), SCCCI (Red-
RE-NIR), CVI (Green-Red-NIR), TGI (Green-NIR) and GI
(Green-Red).
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Fig. 8. SVIs sequentially selected by Algorithm 2.

The parameter setting in training is kept the same for
all U-Nets with various inputs. A total of 8 epochs are
adopted in each network, where each epoch contains 100
iterations. The training time using the hardware in Section
III-C is about 32 minutes. Without loss of any generality,
the accuracy and loss against iteration for Input A. five raw
spectral bands are displayed in Fig 9. It follows from Fig 9,
the accuracy increases quickly with iteration and converges
after 400 iterations.
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Fig. 9. Accuracy, loss against iteration for U-Net with five spectral bands.

The performance metrics for Input A, B and C are calculated
on testing dataset and summarized in Tables II, III and IV.

TABLE Il
PERFORMANCE OF U-NET WITH INPUT A.
Metric/Class Rust Healthy | Backg | Average
Precision 81.9% 97.9% 94.2% 91.3%
Recall 85.5% 96.3% 96.0% 92.6%
F score 0.84 0.97 0.95 0.92

The trained models are also applied to training, validation
and testing images with classification results in Fig 10.
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Fig. 10. Classification results on labelled image by U-Net with Input A, B, and C and spectral ciassifier by randdm fdrest (Iéft to right).

TABLE Il
PERFORMANCE OF U-NET WITH INPUT B.
Metric/Class Rust Healthy | Backg | Average
Precision 61.1% 97.8% 96.3% 85.1%
Recall 91.4% 93.2% 87.7% 90.8%
F score 0.73 0.95 0.92 0.87
TABLE IV
PERFORMANCE OF U-NET WITH INPUT C.
Metric/Class Rust Healthy | Backg | Average
Precision 64.8% 96.1% 91.3% 84.1%
Recall 77.4% 94.3% 88.0% 86.6%
F score 0.71 0.95 0.90 0.85

The following observations are drawn from above results:

(1) First comparing the results of Input A and B (with a same
spatial resolution), the introduction of extra RedEdge and
NIR bands can improve the classification performance.
This can also be shown by the data visualization by t-SNE
algorithm [23] in Fig. 11, where the data by five spectral
bands obtains a better data separation for different classes.

(i) Different from purely spectral based classification [7],
selected SVIs do not improve the performance over
five raw spectral bands. This is because deep learning
approach can automatically learn deep features from the
raw spectral bands and the selected SVIs are actually
combinations of four bands including Green, Red, Red-
Edge and NIR.

- Rust Healthy - Back 30
20 | Heat y a|
o Y 10
S kel
2 7
c c
S )
£ £10
a [a)
- -30
-30 -10 10 30 -30 -10 10 30

Dimension 1 Dimension 1

Fig. 11. t-SNE data visualization: five bands (left), RGB bands (right).

B. Spectral segmentation by random forest

The purely spectral based classifier by random forest al-
gorithm is also tested for comparison. Considering the data
imbalance problem, 20000 samples for each class are ran-
domly selected for model training. In building the random
forest classifier with tree number 100, model hyperparameters
including minimum leaf size minLS and number of points
to split numPTS are optimized by Bayesian optimization
[24], where out-of-the-bag error is selected as the objective
function [7]. The optimized values are minLS = 20 and
numPTS = 3. Under the above parameter setting, random
forest classifier is trained and its performance is evaluated on
testing dataset, summarized in Table. V

TABLE V
PERFORMANCE OF RANDOM FOREST CLASSIFIER.
Metric/Class Rust Healthy | Backg | Average
Precision 489% | 97.9% | 97.9% 81.6%
Recall 87.4% | 84.6% | 98.2% 90.1%
Fy score 0.63 091 0.98 0.84

Comparing the results against the ones of U-Net approaches
in Section I'V-A, it can be seen that U-Net approaches by auto-
matically learning spectral-spatial features outperform purely
spectral based classifier in term of F} score and in particular
U-Net with five VIS-NIR bands excels in all metrics including
Precision, Recall and F} score. Purely spectral based classifier
also leads to a very noisy classification result.

V. CONCLUSIONS

This work aims to exploit aerial visual perception for
yellow rust disease monitoring in winter wheat. An automated
rust disease monitoring framework is proposed by seamlessly
integrating UAV remote sensing, multispectral imaging and
U-Net deep learning network. A field study is performed to
generate an open-access dataset, which is applied to validate
the developed framework under various network inputs and
against conventional spectral based classification by random
forest algorithm. Comparative results show that: (i) the intro-
duction of RedEdge and NIR bands in multispectral image can
improve segmentation performance over RGB visible image;
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(ii) spectral vegetation indices do not provide better perfor-
mance than raw five bands due to information loss in indices
selection; (iii) U-Net deep learning based segmentation draw-
ing spectral-spatial features concurrently outperforms purely
spectral based classification by random forest. Therefore, U-
Net with raw five calibrated VIS-NIR bands are preferred.
Although the developed framework has been initially validated
by field experiments with promising performance, there is still
much room for further development, summarized below:

(1) To address data scarcity, in addition to acquiring more la-
belled data, data augmentation techniques should also be
exploited as a more cost-effective way such as generative
adversarial networks (GANs) [25, 26].

(i1) Various FCN networks and other advanced networks may
also be exploited to further improve the performance such
as mask R-CNN, DeepLab and their variants.
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